

MICS 6 Digital Data Collection
System

Draft as of February 1, 2017

Developer’s Guide

i

Table of Contents

Overview ... 1

Standard Project Folder Structure .. 1

Process Container ... 3

Command Syntax .. 4

Components .. 4

Common Commands .. 5

Environment Variable Space ... 6

Array Trees .. 7

Composite Data Types .. 8

Menu ... 10

Task List ... 12

Task Variables ... 14

Task Options .. 14

Bluetooth Synchronization ... 15

Bluetooth Synchronization Window ... 16

Types of Packages ... 16

Synchronizing Tasks .. 17

Synchronizing Files .. 17

Package Name Filters .. 18

HTML Report Factory .. 20

Document Styling .. 21

Tables .. 21

Progress bar .. 21

Data Grid ... 22

Grid Data Format .. 23

Process Container Environment Debugging ... 24

Global modules ... 25

Command Wrapper Module ... 25

Global Variables Module ... 25

CAPI Menu Applications .. 26

Interviewer Menu ... 26

ii

Table of Contents

UpdateTasks.bch Application .. 28

Supervisor Menu ... 28

CKID.bch .. 29

GenReviewTasks.bch... 29

Central Office Menu .. 29

StatusReport.bch .. 30

Events File ... 30

Appendix I: List of Commands and Functions ... 31

Appendix II: Supported System Colors.. 50

1

Overview
The sixth round of MICS introduces a new software platform for digital data collection using mobile

devices known as Computer Assisted Personal Interview (CAPI). The new system, although it is still

reliant on Census and Survey Processing System (CSPro) as the main data processing software,

implements a range of new external components, exposing additional functionality not natively

supported by CSPro. These external components communicate with CSPro applications through a

Process Container software framework. Process Container is an application specifically developed to

organize, categorize and manage functionality external to the CSPro application, while providing a

consistent way of accessing the said functionality.

Even though the overall system design feels similar to the previous MICS phases, the underlying

software architecture has been completely reworked around the Process Container framework. The

data collection infrastructure still relies on hierarchical relations between the three data management

systems – menus. These menus represent three tiers of the data collection organization: central office,

supervisor, and interviewer, and are designed to drive the data collection process though invoking a

series of data entry and batch edit CSPro applications.

In the previous system the external functionality was implemented in a form of separate unrelated

utilities that were called independently from within the menu applications. The current system,

however, uses process container environment as a standardized way of accessing external functionality

from within CSPro applications.

Standard Project Folder Structure
Standard project folder contains all standard MICS CAPI applications and utilities as well as tools needed

to prepare the static reference data needed for CAPI field operation. The project root folder contains

the following subfolders:

 ACCEPTED – data for clusters accepted at central office

 APPLICATIONS – all CSPro applications relevant to CAPI data collection (see more details below)

 ARRIVED – data for clusters closed in field but not yet accepted at central office

 CLOSED – data for clusters closed by team supervisor

 DATA – clusters data on interviewer CAPI device

 DELEGATED – temporary data files for delegated interviews

 FINALIZED – data for clusters finalized by central office

 PREPARATION – tools and utilities needed for preparing survey reference data

 RECEIVE – data received by supervisor after synchronization via Bluetooth between supervisor

and interviewers

 REFERENCE – survey static reference data, task template files, icons and CSS files

 SYNC – Bluetooth synchronization cache

 TASKS – tasks data files

 TEMP – temporary system files

 UPDATE – system updates folder

 UTILS – process container environment executables and other utilities

 WORK – working files

2

The APPLICATIONS folder is used to store all CSPro applications needed to run the CAPI system on all

hierarchical layers: interviewer, supervisor and central office. The folder contains the following

subfolders and applications:

 CENTRAL

o CentralMenu.ent – main data management application for central office system. (This

application is used to provide data management and progress reporting tools to survey

technical staff working at the central location as well as to finalize data coming from the

field.)

o StatusReport.bch – batch application to tabulate survey data collection operation status

report

 COMMON – reusable application modules and message files

 DICTS – CSPro data dictionaries for all applications

 ENTRY – CSPro entry applications for all survey questionnaires

 EXPORT – data export applications

 INTERVIEWER

o InterviewerMenu.ent – main data management application for interviewer system

o UpdateTasks.bch – batch application to dynamically update interviewer tasks based on

completion of data collection in cluster

 SUPERVISOR

o SupervisorMenu.ent – main data management application for supervisor system

o CKID.ent – Check ID application to check structural integrity of collected data and

provide data collection progress in cluster

o GenReviewTasks.bch – application that generates tasks for questionnaire review by

supervisor based on data collected by interviewer

3

Process Container
Process container is a Windows application environment designed to encapsulate a wide range of

software functionality and expose it to other running applications such as CSEntry. Process container

houses different components that serve as repositories for different functions, interfaces and data

structures. These components can be invoked by the process container application through specialized

command syntax. Commands are delivered to the process container environment through

PCCommand.exe, separate child process. External applications such as CSEntry can dispatch the

command using the PCCommand.exe process to the process container environment running on the

background. The command is communicated to the environment and the environment processes it by

passing it over to the corresponding component, which in turn executes the appropriate function and

returns back to the environment. The command container environment then returns the command

result to the PCCommand.exe process, which then immediately terminates itself, thus letting the

external application know the command has been executed. Figure 1.1 shows the described relationship

between the process container environment, PCComand.exe process and an external CSEntry process.

Figure 1.1 Relationship external application (CSEntry) and process container environment

The process container environment process is represented by a PContainer.exe executable file. When

run, process container initializes all of its components and switches to background mode. In this mode

the environment detects instances of the PCCommand.exe process and is ready to execute all incoming

commands.

Note: If the PCCommand.exe process is executed while the process container environment is not

running on the background, the PCCommand.exe process will start the background instance of the

process container automatically, assuming both executable files, PCCommand.exe and PContainer.exe

are located in the same folder.

CSEntry PCCommand.exe

Process Container
(PContainer.exe)

Component 1

Component 2

Component 3

Component 4

Command

4

Command Syntax
The PCCommand.exe process expects a single command line argument, which represents the command

to be relayed to the process container environment. The command itself is a string formatted as

Universal Resource Identifier (URI). Figure 1.2 describes command general syntax.

Figure 1.2 PCCommand.exe command syntax

 COMMAND?ARG1=VAL1&ARG1=VAL1&ARG1=VAL1

The command consists of a command unique name and optional string of command arguments

separated by a “?” symbol. A string of arguments may contain one or more key/value pairs separated by

an “&” symbol. Below are some of the examples of existing commands:

 GetBtAddress

 SetTempFolder?path=c:\temp

 SetLabel?name=lab1&content=Hello World!!!

Upon receiving a command, the process container environment uses the command name to identify the

appropriate component responsible for command execution. The environment then instructs the

component to execute the function associated with the given command and supplies optional

arguments where needed.

Components
The process container environment is responsible for parsing and routing command execution to

appropriate external components. The actual functionality necessary to execute a command is stored

inside the components themselves. There are seven main components currently implemented in the

current version of the system:

1. Common commands

2. Environment variable space

3. Task list

4. Bluetooth synchronization

5. HTML report factory

6. Web browser

7. Data grid

Each component stores external functionality otherwise unavailable in CSPro. Through specially

constructed process container commands, the environment invokes this functionality and exposes it to

external applications such as CSPro entry and batch applications. The complete list of commands with

descriptions is provided in Appendix I (p. 31-49).

5

Common Commands
The common commands component contains commands used for non-specific tasks such as process

management, file management, environment management and debugging. There are also commands

for displaying custom error messages and Windows notification balloons as well as setting global

environment temporary folder parameter.

6

Environment Variable Space
Environment variable space (ENVI) is a component used to store temporary custom values accessible

while the environment instance is active. ENVI is similar to CSPro working declared in global scope of

entry and batch applications. ENVI variable values can be set and retrieved through commands from

within CSPro applications. Although similar to CSPro working variables, ENVI variables provide a wider

range of accessibility and functionality. The main advantage of an ENVI variable is that once its value is

set it is accessible by any component of the entire system and is not tied to just one application. For

example, an ENVI variable can be set in one CSPro application and then its value can be accesses from

within another CSPro application as long as the environment instance is still active. Thus, ENVI provides

a consistent way of storing temporary values shared between different parts of the entire environment.

ENVI provides four basic data types as follows:

1. Int – 32 bit signed integer values (-2,147,483,648 to +2,147,483,647, default value: 0)

2. Float – 32 bit floating-point values (-3.4 × 1038 to +3.4 × 1038, default value: 0)

3. String – string values of variable length. Literal strings are enclosed in single quotes. Default

value: empty string.

4. Bool – Boolean values (true or false). Default value: true.

ENVI syntax is an LL(k) formatted string, consisting of one or more ENVI expressions separated by

semicolon. For example: int i = 10; int j = i + 5;

The above ENVI syntax contains two expressions declaring variables ‘i’ and ‘j’, setting values 10 and 15,

respectively.

Two environment commands are used to submit ENVI syntax to the environment and retrieve ENVI

values:

 ExecEnvi – is used to parse and execute ENVI syntax, and accepts single argument commands

containing ENVI expressions list

 GetEnviValue – is used to extract a value from single ENVI expression, accepts single argument

“value” containing single ENVI expression, and saves extracted value to temp folder into

envivalue.tmp text file

ENVI supports simple arithmetic, relational and logical operations listed below in order of execution

priority:

 Arithmetic:

o (*) – Multiplication

o (/) – Division

o (+) – Addition

o (-) – Subtraction

 Relational:

o (==) – Equals

o (!=) – Not equals

o (>) – Greater than

o (>=) – Greater than or equals to

7

o (<) – Less than

o (<=) – Less than or equals to

o (!) – Logical negation

 Logical

o (&) – Logical AND

o (|) – Logical OR

ENVI syntax is type-strong, i.e. a value of one type cannot be assigned to a variable of a different type

without explicit conversion. The only exception is floating-point variables that can accept integer values.

However, when an integer value is assigned to a floating-point variable, the value is converted to a

floating-point data type.

All arithmetic and relational operations are applicable to integer and floating-point values. Some

arithmetic and relational operations are applicable to string values (+, ==, !=). Logical operations are

applicable to Boolean values only. Relational operation always return a Boolean value.

Array Trees
ENVI supports multi-dimensional vectors – variable capable of storing multiple values. The values are

indexed by integer order index, similar to CSPro arrays. Structurally, these vectors are organized in a tree

structure called “array tree”. Each variable has a root value, and each value contains a one-dimensional

zero based vector of values of the same type with a variable length. The initial vector length is equal to

zero. Figure 1.3 describes the tree structure of value vectors.

Figure 1.2. Value vector tree

Array trees have no limit on the number of branches, and, therefore, have no limit on a number of array

dimensions. The following example demonstrates the construction and usage of the array tree:

R
o

o
t

va
lu

e
(V

) V[0]

V[1]

V[1][0]

V[1][1]

V[1]2]V[2]

…

V[n]

Variable

8

Int A;

A = 1;

A += 10;

A += 20;

A += 30;

A[1] += 21;

A[1] + = 22;

The above example declares integer variable (A). Root value of (A) is set to (1). Operator (+=) is used to

append additional values to vector branches of the value of (A). After the above code is executed,

variable (A) will contain the following array tree:

In the above example expression A[1][0] returns integer value 21. The declaration syntax can also be

simplified to the following:

Int A = 1{10, 20{21, 22}, 30};

Composite Data Types
Additionally to basic data types, ENVI supports user defined composite data types called “structures”.

Structures are declared with a unique name and can contain one or more variables of any type called

“fields”. Because all ENVI variables are value types, circular structure declarations are not supported,

1

10 20

21

21

30

9

meaning a structure field cannot be of the same type as the structure itself, or any parent structures.

Below is an example of an ENVI expression used for structure declaration:

struct CustomType {int I, string S};

CustomType CT;

CT.I = 10;

CT.S = “Hello World”;

The above example declares structure with the name (CustomType) which contains two fields: integer

field (I) and string field (S). After the structure is declared, we can now declare a variable (CT) of this new

composite type and assign the values of its fields. Fields of the structure variable are accessed by using

(.) operator. Structure fields can be of basic type as well as other composite type.

10

Menu
The menu visual component is designed to display a list of items to a user and to let the user choose

from this list. Each menu item consists of a numeric integer ID and a specially formatted label text. The

menu items can be organized into a tree list, where an item may open a list of sub items. In this case the

item will display a “>” symbol to the right of the label text, indicating that this particular item contains

sub items. There is no restriction on the number of levels in the item tree.

Figure 1.3.1. Menu window screenshot

Environment command showMenu is used to create and display a menu window. This command

accepts a list of option parameters. Each option parameter represents a list item. Apart from item text,

an option can supply an item ID as well as text color information. The option text is formatted using the

following syntax:

[Level][ID:][textcolor=color;;;]Option text

 Level – level of item inside tree. For top level items it is empty. For levels below the top level is

expressed in successive ‘.’ symbol, one per each level. Items on the second level have ‘.’, items

on the third – ‘..’, fourth ‘…’ and so on. If the current item level is higher than the previous item

level, the item is assumed to be a sub item of the previous item. Figure 1.3.2. describes the

relationship between level item level indicator and position of item in a tree.

11

Figure 1.3.2. Relationship between an options list and items tree

 ID –custom numeric ID number the menu component will return to client application when the

option is selected by user

 Textcolor –custom option text color. The color can be expressed as one of the system colors or

as an RGB formatted color string (#RRGGBB).

Note: See Appendix II for a complete list of system colors (p. 50).

When a user clicks on the menu option, the component returns a numeric option ID back to the client

application. Additionally to user defined options, the menu contains a Back button at the bottom of the

window. The showMenu command provides an option to encode a custom numeric ID number to return

in case the user clicks this button.

Tasks

Sync

Interviewer
1

Interviewer
2

Interviewer
3

Exit

1:Tasks

2:Sync

.101: Interviewer 1

.102: Interviewer 2

.103: Interviewer 3

4:Exit

12

Task List
The task list component is a set of visual tools and data handling routines designed to work with the task

driven workflow model. The main idea behind the task driven workflow is to provide the user with a list

of tasks and options to complete them. The task list component uses an underlying CSPro data file to

store the tasks data, and, therefore, all task data manipulations can be performed from within a CSPro

application. Static task metadata is stored in separate XML formatted files – task templates. Templates

are used to categorize different types of tasks as well as define the task behavior and appearance.

Tasks data file can store multiple tasks and is represented by a dictionary (TASKS.DCF). The list of items

in the dictionary is presented in Figure 1.4.1.

Figure 1.4.1. List of items in the dictionary

Field Description

TASK_ID Unique identifier of a task within tasks data file. Usually 32-character long
randomly generated Globally Unique Identifier (GUID).

TASK_TEMPLATENAME Corresponding task template name

TASK_LABEL Task label to be displayed to user

TASK_STATUS Numeric value representing status of task

PARENT_ID Optional field to define a parent of a task. Task list control displays tasks in a
form of a tree. If the value of this filed is equal to the TASK_ID of another task,
the visual control will nest the task under the parent task, independently of
where in the data file the task is physically located

TASK_VARIABLES Multiple group containing optional dynamic variables related to task

TASK_VARNAME Dynamic task variable name

TASK_VARVAL Dynamic task variable value

TASK_DUMMY Dummy field at the end of the record, which prevents CSPro from shifting
modified task records to the bottom for the file. Always needs to be set to a
numeric value. For example, “0”.

The task list visual control is a window that is used to display task items and allow users to interact with

tasks, as shown in Figure 1.4.2.

13

Figure 1.4.2. Screenshot of task list window

The task list window (or form) is used to display one or more task lists separated into tabbed panels.

Each task list has a corresponding tasks data file where each case represents a single task. The

appearance and behavior of task items inside a task list is dictated by the task template file. The task

template file defines the following properties of a task list:

 Task list panels

 Task templates

 Task statuses

 Icons/fonts/colors

 Task options

Task options define a list of choices presented to the user when the task item is clicked on. Each option

has an integer ID number defined in the template file. When the user clicks on an option, the task list

window is closed and the control returns the ID of both the task and the option clicked, which can be

used to route the execution of the application. If the task status does not have a defined options list, the

returned option ID is equal to zero. Task template file can be created using the task template designer

utility.

14

Task Variables
Each task item can store custom string values called task variables. In the task dictionary task variables

are defined by a multiple group – TASK_VARIABLES. By default this multiple group has 16 occurrences,

i.e. each task item can declare up to 16 task variables. Each task variable has a string name and string

value. Task variables are used to store task specific information which can be accessed from within a

CSPro application as well as can be used to direct task behavior.

For example, we can define a task for a household interview. The same interviewer may have several

household assigned to them, and each assigned household will have a corresponding task in a task list.

Although all these tasks are of the same type, some of the task parameters are unique to each task such

as household number, household address, subsample information, etc. All of these parameters are

attached to any particular task in a form of task variables. In our scenario we can store household

number in an occurrence one of the TASK_VARIABLES group, where TASK_VARNAME(1) is equal to

“hh_num” and TASK_VARVAL(1) is equal to “01”. When dealing with any given task, we can read the

value of the hh_num task variable inside our application and, therefore, get the household number from

the task item.

Values of task variables can also be displayed in task labels and task status text as well as options and

warning text of the task list. In order for the task variable value to be displayed in the task list, the task

variable name must be included into the text enclosed in “<%” and “%>” characters. This is similar to

how custom values are displayed in a QSF text of the CSPI CSPro entry applications.

For example, if the label text of the task is equal to “Interview household <%hh_num%>”, and the task

variables group contains variable “hh_num” equal to “01”, then the resulting task label will be displayed

in the task list as follows: “Interview household 01”.

Additionally, numeric task variables can be formatted as integer or floating-point value. For example,

<%d:hh_num,3:000%> will result in a household number to be formatted as integer of three characters

long with leading zeros.

Task Options
Task options are defined in a task template and are displayed in a sliding panel when the user interacts

with the task in the task list by clicking or touching it. Task options have the following four properties:

1. ID – integer number identifying option within template. The number must be unique.

2. Label – text to be displayed for option. May include task variables.

3. Warning text – optional text to be displayed in yes/no warning message when user selects

option. If warning text is empty, no warning message is displayed. Clicking on the No button in

the warning message prevents from the task list returning to the menu application.

4. Visibility flag –Boolean variable defining visibility status of option. This flag can be used to

dynamically hide an option from to be displayed to the user. The flag value is parsed as an ENVI

logical or relational expression. It may also contain task variables. Task variables are evaluated

before the flag is processed by the ENVI module.

Let us consider the following example: We have a task to interview an individual of either male or

female gender. The visibility flag of an option is set to “ig==<%rsex%>”. Let us assume that the gender of

the interviewer is stored in an ENVI variable “ig” and is equal to either “1”or “2”. Similarly, the task

15

variable “rsex” stores the gender of the respondent. Therefore, the visibility flag ENVI expression will be

evaluated to either “true” or “false” based on the equality condition between the gender of the

interviewer and the gender of the respondent. Thus, the option will only be visible to the interviewer, if

their gender corresponds to the gender of the respondent.

Bluetooth Synchronization
Bluetooth synchronization component is used to transfer files or tasks between two devices.

Synchronization can only take place if both devices have Bluetooth radios enabled. Otherwise

synchronization fails.

Before files or tasks can be transferred between users, they have to be packaged and placed in a

transfer cache file. At the time of sync component initialization, the application must supply a path to

the cache file. If cache file does not exist, it is created automatically. The cache file serves as an

intermediate repository for all data to be transferred by the sync component. When the application

stores files or tasks to be transferred to another device, it must create a package to be stored in the

cache. Apart from the data itself, the package contains the following identification information:

 Content ID – optional user defined string identifier of package content

 Sender ID –unique string identifier of sending user (user that is creating package)

 Receiver ID –unique identifier of receiving user

Once the package is created, it is stored in the cache file. (See Figure 1.5.1. for more detail.) The cache

file defines several shelves, on which the package can be stored. At the time of package creation, the

client application must supply a shelf name on which the package will be stored in the cache. Many of

the shelves are not exposed to the client application, as they are used internally by the sync component.

However, the following shelves are available for the client application for package storage and

processing:

 Outgoing – shelf used to store all packages to be sent out to remote clients. After two devices

connect and complete the handshake protocol, all packages from the outgoing folder are

transferred over to their destination clients based on the package ID information. After the

transfer is complete, the packages are removed from the outgoing folder of the sending client.

 Received – all incoming packages from remote clients are initially stored on this shelf. The sync

component processes all packages on this shelf automatically. But the client application has

functionality to invoke unpacking from this folder manually as well.

16

Figure 1.5.1. Common scenario for synchronizing data

Note: See Appendix I for a complete list of functions that work with the Bluetooth synchronization

component (pp. 31-49).

Bluetooth Synchronization Window
When two users initiate the synchronization via the Bluetooth component, the system displays the

synchronization window as shown in Figure 1.5.2.

Figure 1.5.2. Synchronization window

This window displays the connection status to the remote peer and transaction progress. When both

peers initiate the transfer, the system attempts to establish a wireless connection between two devices.

In order for this to happen, the client application must know the Bluetooth MAC address of the remote

peer before connection can be established. Once the connection is established, the status of the

connection will change to “Connected” and the transaction will proceed. In case if there are outgoing

packages, they will be transferred to the remote client and outgoing progress will reflect the status of

sending outgoing packages. If there are incoming data, the incoming progress bar will display the receive

progress as well as display messages on successful receipt of data. After all incoming and outgoing

packages are processed by both peers, the window will close automatically.

Types of Packages
The system is designed to natively synchronize tasks and files between users. In Figure 1.5.1. the

procedures for generating packages differ depending on whether the file or task package is being

Package
files/tasks

Save
package to

cache
"Outoing"

shelf

Synchronize
data with
remote
client

Incoming
data saved

to
"Received"

shelf

Process
incoming
packages

17

created. After the package is created and stored on the shelf in a cache, all further steps in the

synchronization process are universal, and the sync component does not differentiate between the type

of data in transit. The sections below describe the procedures for synchronizing tasks and files.

Synchronizing Tasks
A task is a record in CSPro data. Transferring a task via the Bluetooth sync component requires the

following steps:

1. Convert the task data into a predefined ENVI structure. During this step, the client application

must define an ENVI variable of type “task”. This composite type (structure) is declared by the

sync component and contains all fields to describe a task (similar TASKS.DCF dictionary). The

task structure is declared in the following format:

All fields of this structure mimic the tasks dictionary. Field “variables” is used as a tree array to

store multiple task variables.

2. Create a sync package using the data from the ENVI structure by calling the “addTaskToSync”

environment command. Here besides the task ENVI variable, the client application needs to

supply the destination path for the task. The task will be merged into a CSPro data file defined in

this path on the receiving end of the transaction. If the file doesn’t exist, it will be created.

3. Synchronize with remote client. On the receiving end, the client application must supply the

path to the tasks CSPro dictionary, which will be used to reconstruct task record before writing

them to the specified destination path.

Synchronizing Files
Besides tasks, the sync component can transfer files via Bluetooth between two piers. The steps to

package the files for transfer are as follows:

1. Create an ENVI variable of composite type “fileslist” which represents a list of files to be

transferred. During this step the client application must define an envy variable of type

“fileslist”. This composite type (structure) is declared by the sync component and contains all

fields to describe a task (similar TASKS.DCF dictionary). Task structure is declared in the

following format:

struct task {

 string id,

 string templatename,

 string label,

 int status,

 var variables {

 string name,

 string val

 }

};

18

The fileslist structure contains only one field of another composite structure type “filerec”. The

filerec structure contains metadata required to transfer one file, and declares the source and

destination paths of this file. Field files of type “rilerec” may contain an array tree of multiple

files, and, therefore, allows the sync component to transfer multiple files in one transaction.

2. Create a sync package using the data from the ENVI structure by calling the “addFilesToSync”

environment command. This command expects a name of the fileslist ENVI variable as input as

well as other package ID information.

3. Synchronize with remote client. Once the file package is delivered to the destination pier, the

files are automatically unpacked and saved to their respective destination paths.

Package Name Filters
The sync component is designed to deliver any package from the outgoing cache shelf to the currently

connected remote pier. Although this feature is very powerful in terms of transaction management, it

also requires the client application to actively manage which packages in the local cache are to be

transferred or not transferred at the time of synchronization. This is accomplished by using “package

name filters”.

Package name filter is a string that defines which currently available packages are to be transferred over

based on the content of their names. A package name is also a string, consisting of multiple substrings

delimited by double semicolon “;;”. There are three substrings:

1. Package content ID

2. Receiver ID

3. Sender ID

Therefore, for example, if the package content ID is equal to “content_id_123”, the receiver ID is “101”

and the sender ID is “102”, then the name of the package would be constructed as:

 content_id_123;;101;;102

By default, during the synchronization procedure, all packages from the outgoing shelf are scheduled to

be transferred to the connected pier. However, the sending pier may use the name filter to only submit

certain packages to the transfer queue. Name filter string is constructed using substrings of double

semicolon delimited values. Each value is an index/value pair delimited by a colon “:”. The index potion

represents a numeric zero based index of the value within the package name. For example index “0” will

refer to the first element in the package name. In the above example this element is equal to

“content_id_123”. Index “2” will refer to the third element, which is equal to “102”.

Consider the following example that demonstrates the name filtering in action. Suppose that we have

three packages in the outgoing shelf:

struct fileslist {

 filerec files{

 string source,

 string dest

 }

};

19

 content_id_123;;101;;102

 content_id_456;;105;;102

 content_id_789;;105;;102

When synchronizing with user 105, we only want to transfer packages related to that user, i.e. the

receiver ID (second element in the package name) is equal to 105. Therefore when synchronizing with

this user, we would also include the following package name filter:

 “1:105”

The sync component will analyze the packages names and will only queue for transfer the ones that pass

the name filter. In this case, the filter only passes for packages two and three, as the second component

of their name (zero-based component index “1”) is equal to “105”. The first package does not pass the

filter, and therefore is not transferred.

If we modify the filter string value to the following:

 “0:content_id_456;;1:105”

Then only the second package in our example will be queued for transfer, because only the name of the

second package passes our modified name filter.

20

HTML Report Factory
The HTML report factory component is designed to simplify creation of HTML formatted documents and

pages. The component utilizes a series of environment commands to construct an abstract layout of the

document and generate HTML document structure with minimal knowledge of HTML architecture. The

document is organized as a tree of elements. There are five different types of elements available:

1. Label –generic element designed to contain and display HTML text; implemented with HTML

<div> tag

2. List – displays HTML ordered and unordered <il> lists

3. Table – displays HTML <table> element

4. Progress bar – displays generic progress bar with value normalized to 100 by default

5. Hyperlink – displays HTML hyperlink <A> element

As mentioned above the document elements can be combined to form a tree, where one element can

nest another element within itself. For example, a label element can nest a table within its content and a

table cell can nest a list element. Each document element is created with a unique name. This name, if

placed inside the content of another element with the “%” sign on both ends will inform the document

builder component to nest one element within the content of another.

For example, if we create two tables with names “table_1” and “table_2”. We define table_1 to have

three rows and four columns and table_2 to have two rows and two columns. When creating a cell in

table_1 on row two and column three, if we include %table_2% into the content of that cell, table_2

will be nested within the cell (2,3) of table_1, as demonstrated in Figure 1.6.

Figure 1.6. Nesting of two tables

Table_1

 Table_2

.

Document elements are created independently from one another. In the above example it does not

matter if table_1 was created before table_2. All of the nesting is resolved when the report builder

component is instructed to create (or render) the document. At that time a recursive dynamic process

iterates through the entire set of created components and dynamically builds the HTML output.

Due to the recursive nature of the report building process, circular nesting is prohibited. The document

tree must not have any loops of elements in it. Otherwise the document building process will fail. The

root element of the document tree is a “page”. Page content is populated using the “addContent”

environment command. Once the document is constructed and all elements are created, the document

can be written out into an HTML formatted file using the “renderDocument” command. The document

content can be cleared using the “clearDocument” command.

21

Document Styling
Visual styling of elements in the document is achieved through HTML cascading style sheets (CSS). Every

element in the document has a default HTML style, but can also use custom defined CSS. Style sheets

files can be linked to the document using the “addCssLink” environment command. Multiple CSS files

can be linked to the same document. Once the CSS file is linked to the document, custom defined CSS

classes can be assigned to document elements. The “clearCssLinks” command removes all current CSS

references from the document.

Tables
A table creation process consists of the followng three steps:

1. Create table element using the “setTable” environment command

2. Add table rows using the “addTableRow” environment command

3. Add table cell for the current row using the “addTableCell” environment command. Note that

when a row is added to the table, the row becomes the “current row” and all added cell will be

appended to that row. Therefore, table cells cannot be added independently from the table

rows.

Progress bar
Progress bar is a non-native HTML element, and is constructed in the document using a combination of

HTML <div> tags. The two following commands are used to create and style the progress bar:

 SetProgressBar – creates progress bar element. The minimum value is zero and maximum is

100. Progress bar displayed value needs to be set anywhere between the minimum and

maximum.

 SetProressBarCss – assigns CSS classes to each of progress bar sub-elements. There are three

sub-element layers in the progress bar element: back frame, front frame, and text layer. Each

one can be assigned a custom CSS class.

22

Data Grid
The data grid is an interactive visual component used for displaying data in a form of a table. Similar to

the tasks list, this component displays a list of records originating from an underlying CSPro data file in a

predetermined format. Unlike the tasks list, the data records are displayed in a table, instead of

separate data items (tasks). Once the data grid is displayed, the user can select one of the data records

and, similar to the task list, the component closes the data grid window and returns a data case ID for

the selected record.

The data grid component also implements functionality for dynamic data filtering based on one of the

data columns. Process container environment may store multiple data grids within one session.

As mentioned above, the underlying data displayed inside the grid comes from a data file. The table

metadata is defined through environment data grid commands which are like all environment

commands are accessible by the client application. The data grid metadata consist of the following:

 Colum definitions

Each column inside the data grid has the following properties:

o Name – name of the column. The name must be unique within the table.

o Label – text to be displayed at column header

o Visibility flag – Boolean flag which determines whether column is visible to user

Column sequence in the table depends on the order of columns creation.

 Filter items definitions

Optionally the data grid may filter out data rows based on string filters. These filters are defined

using environment commands before the data is loaded into the data grid.

 Filter column name

In case the data in the grid requires filtering, one column in the grid data has to be defined as a

filter column. The name of this column has to be then assigned to the filter column name

property of the grid before the grid data is loaded into the table.

Figure 1.7. Data grid with filtering

23

Figure 1.7. shows an example of the data grid window with filtering enabled. The table data is displayed

in the right panel. Data filtering panel has five items defined and is displayed in a form of a list in the left

panel. There are two visible columns in the data:

 Cluster number

 Cluster info

There is also a third hidden filter column which contains data corresponding to the filter items. Once the

data is bound to the grid, the component dynamically compares the values of the filter column to the

defined filters, and displays only those data records in which the data in the filter column corresponds to

the selected filter item. In this particular example we see that there are four data records with filter

value equal to “NOT STARTED” and one data record with filter value equal to “STARTED”.

Note: Data filtering is optional. If no filtering is required and no filter items are declared, the left-side

filter panel is dynamically hidden from the user.

After the table is displayed, the user can select one of the data rows by double clicking the row in the

table, or selecting the row and clicking the “” button in the bottom right corner of the window. Once

the record is selected, the data grid window closes and the environment returns the data identifier of

the selected case. This identifier is then passed over to the client application.

Grid Data Format
Data displayed in the grid comes from a CSPro data file formatted with static “Grid.dcf” dictionary. Just

like with the task list, the client application is responsible for creating, maintaining and modifying the

underlying grid data. The grid dictionary contains the following fields:

 GRID_ID –32-character long case identifier. Each case in a grid data file represents a row in the

table. Therefore, each row in the grid must have a unique identifier.

 DGCELL –multiple group containing collection of cell in the row. By default, the maximum

number of cells in a row is equal to 30. However, the maximum occurrence number in a group

can be extended if needed. Each cell in the data consists two items as follows:

o DGCOLUMN – grid column name. When the grid row is displayed by the grid

component, the column names for each cell of this row are matched against the defined

columns in the grid metadata.

o DGVALUE – Cell value

Note: The order of the cell in the DGCELL group is not relevant to the order in which the data is

displayed in a grid window.

24

Process Container Environment Debugging
Because the client application executes commands through an external call to the PCommand.exe

module, there is no direct link between the debugging infrastructures of the client application and the

process container environment. Therefore, it is not possible to debug environment related code during

the compilation time of the client application. The environment debugging is only possible during

runtime. For example, if the client application submits a syntactically incorrect ENVI expression to the

environment, it is only possible to register the syntax error only during the execution of the command,

which evaluates this expression. Because the ENVI expression is just a string inside the client application,

the client application compiler will not detect the error at compilation.

By default, the environment attempts to execute a command, and if any error prevents it from being

executed, the environment returns to the client application without executing the command. The

debugging layer is disabled. Executing the “SetDebugFile” command enables the environment

debugging. After debugging is enabled, every time a command execution raises an error, this error will

be appended to a text file specified as debug output file.

25

Global modules
Starting with Version 6 CSPro provides functionality to plug in external logic modules to CSPro

applications. Similar to main application logic, external modules are files with series of CSPro

declarations that can be accessed from the main application. The main idea behind external modules is

to reuse common static functionality without having to declare it in every application that uses it.

External logic files can declare working variables as well as user defined functions. The MICS CAPI system

makes use of the external logic modules to encode commonly used variables and functions.

Command Wrapper Module
As described above, the functionality of the process container environment is accessed through

environment commands. These commands are URI formatted strings that are passed as command line

arguments to the PCCommand.exe process. To simplify the command call procedures a common

external logic module is included in the system, which serves as a CSPro wrapper to the execution of

environment commands. Instead of constructing raw commands, this module provides a collection of

CSPro user defined functions that can be invoked from any CSPro application. These functions are

described in Appendix I of this document (pp. 31-49). The file name of the module is

“CommandWrappers.apc”.

There are the following two global variables declared in this module that the client application must

assign before the module logic can be invoked:

 utilsDir – path to directory with process container environment executable

 tempDir – path to temporary directory used by process container environment

Global Variables Module
The second module distributed with the system is called GlobalVar.apc. This module contains global

declarations used by multiple applications throughout the system. The following essential global

variables are declared in this module:

 workDrive – path to logical drive the system is installed on

 projectDir – CAPI project root directory

 projectName – CAPI project name

 csproDir – path to directory where CSPro is installed. By default is assigned using the

“pathname(CSPro)” function.

 projectStartYear – data collection cycle start year

 projectEndYear – data collection cycle end year

All of these variables are assigned within a user defined function SetGlobalVariables(). The

implementation of this function is project-specific and needs to be adjusted for every survey. The

SetGlobalVariables() function must be called from every application using the module. Other commonly

used functions declared in the global variables module are described in Appendix I (pp. 31-49).

26

CAPI Menu Applications
As mentioned in the beginning of this document, the MICS digital data collection system consists of a

series of CSPro entry and batch edit applications. These applications are responsible for data

management on all levels of the survey data collection operation. There are three distinct sub-systems:

 Interviewer system – deployed on the interviewer mobile device allowing for collection,

management, and transfer of data by individual interviewers

 Supervisor system – deployed on the team supervisor mobile device allowing for team task

management as well as accumulation of data collected by interviewers within the team and

reporting on the progress and quality of collected data

 Central office system – deployed on a stationary computer at the survey central office location;

serves as a data management platform for accepting and processing data coming from team

supervisors. This system also provides comprehensive data collection progress and data quality

reporting.

Any given survey presumes a set of questions that the interviewer is expected to ask the respondent and

record the answers. This set of questions is typically organized in logically structured questionnaires. In

CAPI surveys the role of the data collection software is to implement the logic of the questionnaires and

provide the interviewer with an interface to ask the questions and record the answers with maximum

precision. In the MICS data collection system, the role of the data collection software is played by

specially developed CSPro entry applications. They mimic the structure and logic MICS paper

questionnaires and provide comprehensive human error mitigation where possible. These applications

are designed to record the interaction between one interviewer and one respondent at a time.

However, the typical survey envelops thousands of respondents as well as a hundred or more

interviewers. That is why besides data collection software, the MICS digital data collection system

deploys a set of data management applications – menus.

If data entry applications govern the interaction between interviewers and respondents, then menu

applications govern everything else in the data collection process that happens before and after the

interviewer has conducted every interview. Because the system is distributed, i.e. multiple parts of the

system run on multiple devices concurrently, menu applications are designed to manage this concurrent

process for the entire data collection operation. Each subsystem interacts with its user providing a visual

list of tasks and actions that the user is expected to perform.

Interviewer Menu
The interviewer menu application is a CSPro data entry application which is used as a main logical hub

for data management on the interviewer level. This application serves as a client application to the

process container environment and relies heavily of its components. The main application file is called

“InterviewerMenu.ent” and it resides in the Applications\Interviewer subfolder of the project.

The main logic file of the interviewer menu is “InterviewerMenu.ent.apc”. This file consists of all

functions used in the interviewer menu system. The reader of this document is expected to have the

knowledge of CSPro and ability to read and understand CSPro code. This section describes some of the

less intuitive algorithms and functions used in the interviewer menu application.

27

It is worth noting that all menu applications, including the interviewer menu, use the following common

modules:

 CommandWrappers.apc – contains functions to simplify interaction between CSPro applications

and PC environment. (See Appendix I (pp.XX-XX).)

 GlobalVars.apc – contains global common variables used in the system as well as some general

functions. (See Appendix II (p. XX).)

The logic in PreProc of the application is responsible for setting global application parameters such as

project folders. Instructions also include creation of team members array, task list, and synchronization

cache.

The system automatically detects the user based on the device Bluetooth MAC address, and, therefore,

it does not expect manual entry of interviewer credentials. The only piece of information entered

manually is the cluster number; therefore, the rest of the menu processing is located in PostProc of the

MCLUST field.

The logic runs a loop of the main menu, tasks list, and Bluetooth sync until the user exist the system.

Every time the interviewer selects a task from the list, the application loads the task data into the TASKS

dictionary and returns the option ID. Using this information the “TaskRouter()” function directs the

further execution of the application. The following list describes some of the other functions declared in

the interviewer menu application:

 SetTaskVar() / GetTaskVar() - sets and retrieves value of task variable for the currently loaded

task

 BackupData() – copies the collected data files as well as tasks to all backup drives

 FillTeam() – constructs an array of interviewer team member with all related information

 ShowTasks() – displays task list window and in case user selects task/action, loads task data into

TASKS dictionary and returns selected option ID

 UpdateTasks() – runs UpdateTasks.bch batch application, which updates task list based on

currently available data

 PackDataForSup() – creates outgoing synchronization package containing current data and

saves to sync cache file. Note that before creating new package, will delete the old package with

the same content ID. This way only the latest data is included in the transfer.

 GenHhIntPff() – starts household entry application

 DeleteHousehold() – deletes all household data, including all individual questionnaires. Also

deletes all relevant tasks from the task list.

 GetSplitHhNum() - generates new household number for split household. Returns 0 if cannot

generate new HH number.

 SplitHousehold() – generates new task in task list for split household

 GenIndIntPff() – starts individual entry application

 Delegate() – delegates individual interview to another interviewer

 DeleteIndividual() – deletes individual case, but leaves individual interview task present in list

 BtSync() – initiates Bluetooth synchronization process with another team member

 SetMenuColors() – dynamically sets colors for main menu options based on synchronization

status

28

UpdateTasks.bch Application
Each interviewer maintains a list of assigned tasks. By completing these tasks the system keeps track of

the task statuses as well as generates new tasks based on the requirement of the survey. In order to do

so, the system needs to have access to the collected data and, therefore, to all of the CSPro dictionaries

related to all questionnaires. To reduce the size of the menu application and the number of referenced

external dictionaries, a separate batch application is used to analyze the data collected by the

interviewer and update the task list data file. This application is called “UpdateTasks.bch” and the menu

calls this application every time the user performs an action which may affect the questionnaire data.

Supervisor Menu
Similar to the interviewer menu, the supervisor menu application is a CSPro data entry application that

is used as a main logical hub for data management on the supervisor level. This application serves as a

client application to the process container environment and relies heavily of its components. The main

application file is “SupervisorMenu.ent”, and it resides in the Applications\Supervisor subfolder of the

project.

Structurally the supervisor menu application logic is similar to the interviewer menu; however, the tasks

performed by the supervisor are different from the tasks performed by an interviewer, therefore the

functions comprising the supervisor menu application are also different. The following list describes

selected functions declared in the supervisor menu application logic file:

 genTasks() – generates task list data file for cluster. This function is called when the supervisor

opens a new cluster for data collection. The function will generate household assignment tasks

as well as general tasks related to cluster processing on the supervisor level.

 onHhAssign() – handles event of household assignment by supervisor to interviewer. This

function will update the household assignment task as well as create a household collection task

for the interviewer and add it to the sync cache file.

 concatIntervData() – concatenates data from all interviewers per cluster. The input is in the

work folder, the output is in the receive folder.

 onClustClose() – handles cluster closing procedure. This function will call the CKID application

and in case the data collection is complete for the cluster and no structural errors are detected,

will change the task status to “Closed” for the cluster.

 reviewHhInt() – starts data entry application for existing household collected by one of

interviewers. This function will create a temporary copy of the household data; therefore, any

changes to the data will not be reflected in the actual data coming from the interviewer.

 reviewIndInt() - starts data entry application for existing individual collected by one of

interviewers. This function will create a temporary copy of the individual data; therefore, any

changes to the data will not be reflected in the actual data coming from the interviewer.

 procNoteLine() – function used to convert raw note record into HTML table row. This function is

called from within the reviewNotes() function.

 reviewNotes() – compiles all notes taken by the interviewer into HTML report for household,

including all individuals collected in this household

 writeVerifTabl() – creates HTML table for household schedule of one household during

verification by supervisor

29

 compareVerifHhSchedule() – generates HTML report comparing household schedules of data

collected by interviewer and verifying data collected by supervisor

 taskRouter() - main function that makes decisions on routing code execution for currently

loaded task

 getReviewedHouseholds() - creates a semi-colon separated string with all household cases

found in the "R" file (supervisor verification file)

 populateReviewTasks() – populates task list data file displayed on review data panel

 syncCentral() – initiates remote data synchronization procedure with central office server

 syncCentralRequired() – checks if synchronization with central office is required

 setLastDateMarker() - setting date marker after successful remote synchronization with central

office

 doUpdate() – checks update folder content. If there are files to update, updates the current

system and creates update packages for all interviewers on the team.

There are two additional external batch applications used by the supervisor menu: CKID.bch and

GenReviewTasks.bch. Similar to how the UpdateTasks.bch application implements some of the

functionality of the interviewer system to reduce the load on the main menu application, these two

applications accomplish tasks that would make the main supervisor application too bulky and hard to

maintain if included as part of the main menu logic.

CKID.bch
This batch application is used to analyze the structure of the data collected in a cluster and provide a

detailed progress report on data collection operation. It will also flag all structural errors in the data and

report it to the supervisor. The menu application will not allow the supervisor to close data collection in

a cluster unless all errors are resolved and all identified questionnaires are collected. This application

uses the report factory environment component to produce data collection progress reports.

GenReviewTasks.bch
This batch application is used to generate a task list data file for reviewing questionnaires collected by

interviewers. The logic is similar to the UpdateTasks.bch application; however, the difference is that

GenReviewTasks.bch does not account the sampled unvisited households.

Central Office Menu
The central office menu application is a CSPro data entry application which is used to receive and

process data at the central office level. The main difference from the interviewer and supervisor menu is

that typically this application is deployed only on one computer instead of multiple mobile devices. This

application serves as a client application to the process container environment and relies heavily of its

components. The main application file is CentralMenu.ent and it resides in the Applications\Central

subfolder of the project.

The central office system is designed to accomplish two main tasks during the CAPI data collection

process. One is to receive the data coming from the field supervisors and track progress of data

collection as well as data quality. Second task is related to finalization of data that includes secondary

editing, review, and data exporting procedures.

30

Structurally, the central office menu application logic is similar to the interviewer and supervisor menus.

The following list describes selected functions declared in the central office menu application logic file:

 genNewTasks() – generates new task data file of clusters that have been closed in the field, but

not yet accepted at central office

 addProcTasks() – generates additional tasks for cluster after it has been accepted at central

office

 getClusterStatus() - returns clusters status based on data files in folders. 0 - not started, 1 -

started, 2 - arrived, 3 - accepted, 4 – finalized.

 genGridDataFile() - generates data file for data grid based on clusters file

 pickCluster() – populates data grid with clusters and displays data grid

 copyCluster() – copies all cluster-related files from one folder to another

 addEvent() – adds event record to events file

 progressReport() – generates data collection progress report

 exportData() – exports data to SPSS

StatusReport.bch
StatusReport.bch is a batch application designed to produce a report on the status of the data collection

operation. The report consists of overall survey data collection progress in percentages, a table of data

collection status by cluster, and a table of data collection progress by interviewer team.

Events File
Events file is a CSPro data file formatted by the Events.dcf dictionary. This file is used to store records of

events by cluster. The identifier field in the dictionary is called EVID and represents an event context. In

the case of standard MICS the context is cluster, i.e. each case in the events file represents a list of

events for one cluster. Record EVENT_REC is a multiple record with a maximum number of occurrences

equal to 999. Each occurrence represents an event. Each event record consists of event type, date, time

and optional alpha parameter. The central office menu application populates the events data file during

execution of central office processing steps. Then the event file is used to reconstruct the events in time

for each event context (cluster). The event file is a replacement for the old concept of control files. The

advantage of the event file is that it adds a time dimension to the control data. Using the events file, it is

very easy to provide reporting on certain aspects of the data processing in a given time frame.

31

Appendix I: List of Commands and Functions
SYSTEM

COMMANDS

Command Description
Parameter

[] - optional
^ multiple

Return Value

Start Starts Windows
executable process (.EXE)
and attempts to dock
process main window
inside host window

* proc - path to executable file
* [arg]^ - command line
arguments
* [cls] - main window class
name
* [title] - main window title
portion
* [caption] - custom window
caption

Exec Starts Windows
executable process (.EXE)
without docking process
main window inside host
window

* proc - path to executable file
* [arg] - command line
arguments string
* [window] - main window
state: normal, max, min,
hidden

Messagebox Displays standard
Windows message box
dialog window

* [caption] - message window
caption text
* [text] - message text
* [buttons] - message box
buttons combination:
AbortRetryIgnore, OK,
OKCancel, RetryCancel, YesNo,
YesNoCancel
* [icon] - message box icon:
Asterisk, Error, Exclamation,
Hand, Information, None,
Question, Stop, Warning

Sleep Pauses execution of main
command thread by
specified number of
milliseconds

* delay - milliseconds number

Settempfolder Sets global system-wide
temporary folder

* path - physical folder path

Shownotifyballoon Displays standard
windows notification
balloon message

* [caption] - message caption
* [text] - message text
* [icon] - message icon:
Application, Asterisk, Error,
Exclamation, Hand,
Information, Question, Shield,
Warning, Winlogo

32

SYSTEM

COMMANDS

Command Description
Parameter

[] - optional
^ multiple

Return Value

Runcommandslist Sequentially executes list
of process container
commands stored in text
file. Expects one
command per line.

* file - path to text file with list
of commands to run

Setdebugfile Sets debug output file to
which system will write
all debug messages

[debugFile] - path to debug
output file. (If parameter not
included, the system disables
debugging for the current
session.)

Writedebugmessage Writes test message to
debug file. Only works if
debug file is set

* message - message to write
out to debug file

getsystemdrives Scans current system and
returns list of mapped
drives

* [removableonly] - if set to
more than zero, returns only
removable drives

Returns a
semicolon
delimited string of
all discovered
system drives. The
output is saved to
the
"systemdrives.tmp"
file in the
environment
temporary folder.

exitenvironment Terminates backgroud
'PContainer.exe' process

proccount Returns count of running
processes with given
executable name

* exename - process
executable file name

The output is saved
to the
"proccount.tmp"
file in the
environment
temporary folder

SYSTEM

FUNCTION

Function Description
Parameter

[] - optional
^ multiple

Return Value

runCommand
(string command)

Executes command with
raw environment syntax.
(If buffered execution is
enabled, adds command

* command - command syntax
to execute

33

SYSTEM

FUNCTION

Function Description
Parameter

[] - optional
^ multiple

Return Value

to buffer file.)

setTempFolder
(string tempFolder)

Setting temp folder for
container app

* tempFolder - path to temp
folder

loadPreviousValues() Reads state.dat file in
temp folder and
populates array of
previously saved value

savePreviousValues() Writes out array of values
to state.dat file

enableDebugMode
(string debugOutput)

Enables debug mode
where all command
errors are appended to
debug output file

* debugOutput - path to debug
output file

disableDebugMode() Disables debug mode

writeDebugMessage
(string message)

Writes test message to
debug file. Only works if
debug mode is enabled.

* message - message to write
out to debug file

openBuffer
(string bufferFile)

Opens buffer for buffered
command execution

* bufferFile - path to file that
will store list of commands for
buffered execution

closeBuffer() Closes command buffer
and executes all recorded
commands

string
getSystemDrives
(removableOnly)

Scans current system and
returns ';' delimited list of
mapped system drives

* removableOnly - if not equal
to zero, function returns only
removable drives

execProc
(string target, string
arg, string
windowMode)

Executes and external
process (similar to
execSystem() function in
CSPro)

* target - path to target
executable
* arg - argument string
* windowMode - normal,
maximized, minimized, hidden
(normal by default)

exitEnvironment() Terminates running
process container
environment instance
(PContainer.exe)

procCount
(string procName)

Returns number of
running Windows
processes with given
name

* procName - process
executable file name

Returns number
of currently
running processes

34

ENVI

COMMANDS

Command Description
Parameter

[] - optional
^ multiple

Return Value

execenvi Executes list of ENVI
commands

* commands - ENVI formatted
syntax string
* [caption] - custom window
caption

getenvivalue Parses ENVI expression
and returns value. The
output value is saved to
temp folder with
filename envivalue.tmp
and contains a string
representation of the
value. If parse fails, writes
out '*'.

* value - ENVI expression

ENVI

FUNCTION

Function Description
Parameter

[] - optional
^ multiple

Return Value

execEnvi
(string commands)

Executes ENVI syntax
string

* commands - semicolon
delimited ENVI commands
string

string
readEnviValue
(string expr)

Reads value from ENVI
expression

* expr - ENVI expression to
evaluate

Returns string
with ENVI value.
Returns empty
string if unable to
evaluate
expression.

MENU

COMMANDS

Command Description
Parameter

[] - optional
^ multiple

Return Value

showmenu Displays menu dialog
window

* [title] - menu dialog window
title text
* [fontSize] - menu items font
size
* option^ - list of menu
formatted items
* [backButton] - optional return
value for 'back button'

Returns selected
item ID index. The
output is saved to
the
"menuform.tmp"
file in the
environment
temporary folder.

35

MENU

COMMANDS

Command Description
Parameter

[] - optional
^ multiple

Return Value

setmenucontraints Sets size constrains on
menu window. Window
size is expressed in
percentages relative to
screen size.

* [minx] - minimum width of
window
* [maxx] - maximum width of
window
* [miny] - minimum height of
window
* [maxy] - maximum height of
window

MENU

FUNCTION

Function Description
Parameter

[] - optional
^ multiple

Return Value

setMenuConstraints
(minX, minY, maxX,
maxY)

Setting % constraints on
menu relative to screen
resolution. By default
menu will adapt to
content size.

* minX - minimum horizontal
menu size
* minY - minimum vertical
menu size
* maxX - maximum horizontal
menu size
* maxY - maximum vertical
menu size

showMenu
(string menuTitle)

Showing menu from
array of options (1 based)

* menuTitle - menu window
title

clearMenu() Resets all elements of
'menuOptions' array to
empty string values

addMenuOption
(string optionText)

Appends new menu
option to 'menuOptions'
array

* optionText - appended menu
option text value

addMenuSeparator() Appends separator after
last current menu option

TASKS

COMMANDS

Command Description
Parameter

[] - optional
^ multiple

Return Value

createtasklist Creates new task list * name - unique name of task

36

TASKS

COMMANDS

Command Description
Parameter

[] - optional
^ multiple

Return Value

object in current
environment instance.
Multiple task list object
may be maintained
within one environment
instance.

list object.
* template - path to task
template file

loadtasks Loads tasks data file into
task list object

* tasklist - previously created
task list object name
* panel - zero based index of
task panel, which will be
populated with loaded tasks
* dcf - path CSPro dictionary
file defining tasks data format
* data - path to CSPro data file
containing task records to be
loaded into task list

showtasklist Displays task list window * tasklist - previously created
task list object name

Returns a
semicolon
delimited string
with three task
identification
items:
* Task ID value in
the loaded tasks
data file
* Selected option
ID. (If no options
defined returns (-
1).)
* Zero based panel
index
The output is
saved to the
"tasklist.tmp" file
in the
environment
temporary folder.

setoption Dynamically sets option
for existing task template.
Only valid for currently
running environment
instance. Does not

* tasklist - previously created
task list object name
* id - numeric option ID
* label - label text
* [warning] - optional warning

37

TASKS

COMMANDS

Command Description
Parameter

[] - optional
^ multiple

Return Value

update template file. text
* [visible] - visibility flag

setoptionstree Dynamically defines
options tree in task status
declaration for existing
task template. Only valid
for currently running
environment instance.
Does not update the
template file.

* tasklist - previously created
task list object name
* template - task template
name
* status - numeric ID of status
within task template
* options - options tree index
string

cleanuptaskfile Physically removes
deleted task records from
task data file and
attempts to restore
original task order.

* file - path to task data file
* idlength - task identifier
length
* [skipdeletedcases] - if greater
than zero, deleted task records
are not written to output

TASKS

FUNCTION

Function Description
Parameter

[] - optional
^ multiple

Return Value

createTaskList
(string name, string
templateFile, string
output)

Creates new tasklist
component object

* name - task list object name.
Multiple task lists are
supported by one environment
instance, but names must be
unique.
* templateFile - path to XML
task template file
* output - path to file with task
list output values

loadTasks
(string taskListName,
panelIndex, string
tasksDict, string
tasksData)

Loads tasks data file into
task list component
object

* taskListName - name of
tasklist to load data into
* panelIndex – zero-based
index of panel in task list
window
* tasksDict - path to Cspro
dictionary that describes
format of tasks data file
* tasksData - path to tasks
data file

showTaskList
(string taskListName)

Displays tasklist to users.
Saves task and options

* taskListName - tasklist
component object name

38

TASKS

FUNCTION

Function Description
Parameter

[] - optional
^ multiple

Return Value

ID after users select task
and/or option.

setOption
(string taskList,
optionId, string
optionLabel, string
optionWarning)

Dynamically sets option
in task template

* taskList - task list name
* optionId - option integer ID
* optionLabel - option label
text
* optionWarning - option
warning text. If empty string,
no warning is displayed.

setOptionsTree
(string taskList, string
templateName,
statusId, string
optionsStr)

Dynamically sets option
tree for task status

* taskList - task list name
* templateName - task
template name
* statusId - numeric status ID
* optionsStr - string encoding
new option tree

cleanupTaskFile
(string taskFile,
idLength)

Helper function to
remove deleted entries
from tasks data file and
sort it according to
previously deleted order

* taskFile - path to CSPro task
data file
* idLength - length of ID
variable in tasks dictionary (32
by default)

cleanupTaskFile2
(string taskFile,
idLength,
skipDelCases)

Helper function to
remove deleted entries
from tasks data file and
sort it according to
previously deleted order
with additional flag to
keep or skip deleted
cases in data

* taskFile - path to CSPro task
data file
* idLength - length of ID
variable in tasks dictionary (32
by default)
* skipDleCases - if not equal to
zero, function will not write
deleted cases into output

SYNC

COMMANDS

Command Description
Parameter

[] - optional
^ multiple

Return Value

setcache Sets data file for sync
object. If file already
exists, connects to
existing file, otherwise
creates it.

* filename - path to cache
data file

addtasktosync Adds task package to
warehouse database

* contentId - unique ID for
package content

39

SYNC

COMMANDS

Command Description
Parameter

[] - optional
^ multiple

Return Value

* receiverId - receiving peer
identifier
* senderId - sending peer
identifier
* destFile - path to
destination data file where
task will be merged into
* taskVar - environment
variable with task data
* [shelf] - shelf in cache
where package is created.
('Outgoing' by default.)

getbtaddress Retrieves Bluetooth
address of current
device and saves it into
text file

* outputfile - path to where
Bluetooth address is saved

removefromsync Removes all packages
with same content ID,
receiver ID, and sender
ID

* contentId - unique ID for
package content
* receiverId - receiving peer
identifier
* senderId - sending peer
identifier
* [shelf] - shelf in cache
where package is located.
('Outgoing' by default.)

getpackagescount Returns count of
packages in cache
warehouse on specific
shelf with optional
package name filter

* shelf - warehouse shelf
name
* [filter] - formatted package
name filter string

The output is saved
to the
"PackageCount.tmp"
file in the
environment
temporary folder.

procincomingpackages Processes packages in
'incoming' shelf

* filter - formatted package
name filter string
* taskdict - path to CSPro
tasks dictionary

addfilestosync Adds file package to
cache warehouse

* contentId - unique ID for
package content
* receiverId - receiving peer
identifier
* senderId - sending peer
identifyer
* encrKey - encryption key

40

SYNC

COMMANDS

Command Description
Parameter

[] - optional
^ multiple

Return Value

* filesVar - environment
variable with files meta data
* [shelf] - shelf in cache
where package is created.
('Outgoing' by default.)

createfileslistvar Creates ENVI variable
of type 'filerec', which
holds file records for
every file in specified
source directory with
specified mask

* filesvar - output ENVI
variable name (if variable
exists, will redeclare it)
* sourcedir - source files
directory
* destDir - destination
directory
* [mask]^ - file filter mask
* deep - if true, includes
subdirectories (true by
default)

startsync Starts synchronization
with remote Bluetooth
peer

* localaddress - local peer
Bluetooth address
* localpeerid - local peer ID
* localpeername - local peer
name
* remoteaddress - remote
peer Bluetooth address
* remotepeerid - remote
peer ID
* remotepeername - remote
peer name
* tasksdict - path to
dictionary that describes
tasks
* [filter] - filter string to filter
out outgoing packages

SYNC

FUNCTION

Function Description
Parameter

[] - optional
^ multiple

Return Value

string GetBtAddress() Function to retrieve
Bluetooth MAC
address of current
device

 Returns string
with current
device
Bluetooth
MAC address

41

SYNC

FUNCTION

Function Description
Parameter

[] - optional
^ multiple

Return Value

setCache
(string cacheFile)

Sets cache file for
sync component

* cacheFile - path to cache
file. If file doesn’t exist, it
will be created.

addTaskToSync
(string taskVar, string
contentId, string receiverId,
string senderId, string destFile,
string shelf)

Adds task package to
sync cache

* taskVar - ENVI structure
with data for task to be
added to cache
* contentId - package
content ID
* receiverId - package
receiver ID
* senderId - package sender
ID
* destFile - path destination
tasks file on receiver device
* shelf - shelf to put newly
created package in cache

addFilesToSync
(string filesVar, string
contentId, string receiverId,
string senderId, string encrKey,
string shelf)

Adds files package to
sync cache

* filesVar - ENVI structure
with metadata for list of
files to be included into
package
* contentId - package
content ID
* receiverId - package
receiver ID
* senderId - package sender
ID
* encrKey - encryption key
used to encrypt files
content
* shelf - shelf to put newly
created package in cache

removeFromSync
(string contentId, string
receiverId, string senderId,
string shelf)

Removes all outgoing
packages with same
content, receiver and
sender IDs

* contentId - package
content ID
* receiverId - package
receiver ID
* senderId - package sender
ID
* shelf - shelf containing
package

startSync
(string localAddress, string
localPeerId, string

Starts Bluetooth
synchronization
process

* localAddress - local
system Bluetooth address
* localPeerId - local peer

42

SYNC

FUNCTION

Function Description
Parameter

[] - optional
^ multiple

Return Value

localPeerName, string
remoteAddress, string
remotePeerId, string
remotePeerName, string
tasksDict, string filterStr)

identifier
* localPeerName - local
peer name (for display only)
* remoteAddress -
Bluetooth address of
remote peer
* remotePeerId - remote
peer identifier
* remotePeerName -
remote peer name (for
display only)
* tasksDict - path to tasks
dictionary file
* filterStr - optional filter
string to filter packages by
content ID

getOutgoingPackageCount
(string filterStr)

Returns number of
packages in outgoing
shelf

* filterStr - filter string to
filter packages by content
ID

procIncoming
(string filterStr, string tasksDict)

Processes packages in
incoming shelf. This
usually happens after
syncing automatically.
But this function lets
application process
packages in the
incoming shelf
without
synchronization.

* filterStr - filter string to
filter packages by content
ID
* tasksDict - path to tasks
dictionary file

createFilesListVar
(string varName, string
sourceDir, string destDir, string
mask)

Creates ENVI variable
of type 'filerec', which
holds file records for
every file in specified
source directory with
specified mask

* varName - output ENVI
variable name
* sourceDir - source
directory
* destDir - destination
directory
* mask - file filter mask

43

DOCUMENT BUILDER

COMMANDS

Command Description
Parameter

[] - optional
^ multiple

Return Value

cleardocument Clears all nodes from
documents and removes
all content from pages,
but does not reset title
and CSS links

setdocumenttitle Sets document title * title - document title text

addcsslink Adds CSS reference to
document header

* css - path to css file (could
be relative to document)

clearcsslinks Clears all CSS links in
document

addcontent Appends HTML content
to current page

* content - HTML content to
be appended to document
page

clearcontent Clears page content, but
does not delete any
elements from elements
collection

setlabel Sets label element in
element collection

* name - label element name.
Must be unique within
document
* [content] - HTML content of
label
* [cssclass] - cssclass for label

getlabelcontent Returns label content
string

* labelName - label element
name

The output is saved
to the
"labelContent.tmp"
file in the
environment
temporary folder.

setprogressbar Sets progress bar in
elements collection

* name - progress bar
element name
* min - minimum value of
progress bar (0 by default)
* max - maximum value of
progress bar (100 by default)
* value - current value of
progress bar (0 by default)

setprogressbarcss Sets CSS classes for
progress bar

* name - progress bar
element name
* css - class for overall
progress bar element
* cssBack - class for progress

44

DOCUMENT BUILDER

COMMANDS

Command Description
Parameter

[] - optional
^ multiple

Return Value

bar back element
* cssFront - class for progress
bar front element
* cssText - class for progress
bar text element

settable Sets table element in
elements collection

* name - table element name.
Must be unique within
document
* [cssclass] - cssclass for table

addtablerow Adds row to table
element

* tablename - table element
name
* [cssclass] - CSS class for row
* [th]^ - header cell text with
default table CSS
* [td]* - table cell text with
default table CSS

addtablecell Adds cell to current row * [content] - cell HTML
content
* [cssclass] - CSS class for cell
* [isheader] - if true, writes
out <th> tag instead of <td>
* [colspan] - column span
count
* [rowspan] - row span count

setlist Sets list element in
elements collection

* name - list element name
* [cssclass] - cssclass for list
* [isordered] - if true, creates
ordered list

addlistitem Adds list item to list * listname - list element name
* [content] - list item HTML
content
* [cssclass] - list item CSS class

renderdocument Generates HTML file
based on currently built
document

* filename - path to HTML file
output

DOCUMENT BUILDER

FUNCTION

Function Description
Parameter

[] - optional
^ multiple

Return Value

clearDocument() Clears document content

45

DOCUMENT BUILDER

FUNCTION

Function Description
Parameter

[] - optional
^ multiple

Return Value

clearCssLinks() Clears CSS links in
document

string htmlHeader
(order, string content)

Creates HTML header
tag

* order - header tag order
value. Example: If order = 3,
the tag is <h3>..</h3>
* content - HTML header
content

setDocumentTitle
(string title1)

Sets document title to be
displayed in title bar of
browser window

* title1 - text to be displayed in
title

addCssLink(string css) Adds CSS link to
document

* css - URL to CSS file

setLabel(string name,
string content)

Sets label element in
document. If label with
name already present,
clears its content

* name - label element name
* content - HTML label content

setLabelCss
(string name, string
content, string
cssClass)

Sets label element with
CSS class attribute

* name - label element name
* content - HTML label content
* cssClass - CSS class to be
used with label element

setTableCss
(string name, string
cssClass)

Sets table element with
CSS class attribute

* name - table element name
* cssClass - CSS class to be
used with table element

addTableRow
(string tableName)

Adds row to table. The
created row becomes
the 'current row'.

* tableName - table element
name

addTableCell
(string content,
isHeader)

Adds cell to 'current row' * content - cell HTML content
* isHeader - '0' - regular cell,
'!0' - table header cell

addContent
(string content)

Adds content to
document

* content - cell HTML content

renderDocument
(string fname)

Traverses document tree
and generates document

* fname - filename for
generated HTML document

string div
(string content, string
cssClass)

Creates <div> HTML tag * content - HTML content of
<div> tag
* cssClass - CSS class for <div>
tag

setProgressBar
(string name, value)

Sets progress bar
document element

* name - progress bar element
name
* value - progress bar value (by
default should be between 0

46

DOCUMENT BUILDER

FUNCTION

Function Description
Parameter

[] - optional
^ multiple

Return Value

and 100)

setProgressBarCss
(string name, string
css, string cssBack,
string cssFront, string
cssText)

Sets CSS classes used by
progress bar element

* name - progress bar element
name
* css - general CSS class
* cssBack - CSS for progress
bar background
* cssFront - CSS for progress
bar foreground
* cssText - CSS for progress bar
value text

setList(string name) Sets list document
element

* name - list element name

addListItem
(string listName,
string content)

Adds item to list element * listName - list element name
* Content - HTML content

string
getLabelContent
(string labelName)

Gets string content of
label element

* labelName - label element
name

Returns string
with label
content. Returns
empty string if no
label present with
given name.

DATA GRID

COMMANDS

Command Description
Parameter

[] - optional
^ multiple

Return Value

createdatagrid Creates new data grid
object. Multiple grid
objects can be created
within the same
environment instance

* name - unique grid name
* title - grid window title
* dict - path to CSOro
dictionary file representing
grid data structure

setdatagridparams Sets general data grid
parameters

* datagrid - data grid object
name
* [label] - caption label
* [fontSize] - data grid global
font size
* [labelFontSize] - caption
label font size

setdatagridfilters Sets filter items
collection for data grid

* datagrid - data grid object
name

47

DATA GRID

COMMANDS

Command Description
Parameter

[] - optional
^ multiple

Return Value

* filter^ - list of filter items

adddatagridcolumn Adds column to data
grid

* datagrid - data grid object
name
* name - column name (must
be unique within table)
* [type] - column type [int,
float, string] - string by default
* [label] - column label
* [visible] - column visibility
flag [true/false]
* [fill] - column fill [true/false].
If true, column will fill as much
space in the grid as it can,
otherwise the width of
column will be determined by
its content.

cleardatagridcolumns Removes all declared
columns in grid

* datagrid - data grid object
name

showdatagrid Loads data into grid and
displays it in a window

* datagrid - data grid object
name
* datafile - path to CSPro data
file with grid data
* [filterColumn] - filter column
name

Returns case ID of
selected grid row.
The output is saved
to the
"DataGrid.tmp" file
in the environment
temporary folder.

DATA GRID

FUNCTION

Function Description
Parameter

[] - optional
^ multiple

Return Value

createDataGrid
(string name, string
gridTitle, string gridDict)

Creates data grid
environment object

* name - data grid name
* gridTtitle - title text to
display in window header
* gridDict - path to CSPro
dictionary representing data
structure for grid data

setDataGridFontSize
(string dataGrid, fontSize)

Sets data grid font size * dataGrid - data grid name
* fontSize - font size

setDataGridLabelFontSize
(string dataGrid, fontSize)

Sets data grid label font
size

* dataGrid - data grid name
* fontSize - font size

setDataGridLabel(string Sets static text of data * dataGrid - data grid name

48

DATA GRID

FUNCTION

Function Description
Parameter

[] - optional
^ multiple

Return Value

dataGrid, string label) grid label * label - label text

setDataGridFilters
(string dataGrid, array
string filters(), filterNum)

Sets list of filters for
data grid control. Filters
are displayed in combo
box at the top of
control and can be
selected by user.

* dataGrid - data grid name
* filters() - array of filters
* number of filters in array

addDataGridColumn
(string dataGrid, string
columnName, string
columnType, string
columnLabel, visible, fill)

Defines and adds data
grid column

* dataGrid - data grid name
* columnName - column
name (must be unique within
grid columns list)
* columnType - type of
column values: string, int,
float (string by default)
* columnLabel - column
header text
* visible - '0': column not
visible, '!0': column visible
(visible by default)
* fill - '0': column is autosized
to content, '!0' column is
stretched to fill the available
space (autosized by default)

showDataGrid
(string dataGrid, string
dataFile, string
filterColumn)

Displays data grid * dataGrid - data grid name
* dataFile - path to data file
with grid data
* filterColumn - column with
values to be used by grid filter
(leave blank if no filter
present in the grid)

BROWSER

COMMANDS

Command Description
Parameter

[] - optional
^ multiple

Return Value

browse Opens HTML document
inside built-in Web
browser

* url - URL to be opened in
browser window

49

BROWSER

FUNCTION

Function Description
Parameter

[] - optional
^ multiple

Return Value

browse(string url) Displays document in
built-in Web browser

* url - URL of document to
display

DATA

COMMANDS

Command Description
Parameter

[] - optional
^ multiple

Return Value

deletecase Deletes cases from
CSPro data. Evaluates
each record in file and
removes it if it
corresponds to ID values
in command
parameters.

* datafile - path to input
CSPro data file
* dict - path to CSPro
dictionary describing data file
* list of parameters with
names of ID Items from
dictionary and corresponding
ID values

DATA

FUNCTION

Function Description
Parameter

[] - optional
^ multiple

Return Value

deleteCase
(string dataFile, string
dict, array string
idValues(,), idsNum)

Deletes case from
CSPro data file

* dataFile - path to data file
* dict - path to CSPro
dictionary for data file
* idValues(,) - array of data ID
values (first dimension is var
name, second is var value)
* idsNum - number of ID
values in idValues array

50

Appendix II: Supported System Colors

